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Abstract. We identify the spin connection of four-dimensional spacetime with a subgroup 
of a simple gauge group G.  The remaining subgroups of G are the usual internal symmetry 
groups. Using the work of Weinberg to relate gauge constants to the circumferences of 
compact spaces and identifying the known spin of elementary particles with the eigenvalues 
of the spin connection allows us to set the scale of G. We can then calculate the remaining 
gauge coupling constants numerically. We show how this mechanism works for the sample 
calculation where G is SU,, the spin connection is the usual SU, x SU, and the internal 
gauge symmetry is U , .  We find the electromagnetic fine-structure constant to be -A. 

1. Introduction 

The idea of relating the electromagnetic gauge coupling constant to the circumference 
of the compact U1 gauge group goes back to Souriau (1963). He considered the wave 
equation on the five-dimensional manifold of the Kaluza (1921)-Klein (1926a, b) 
unification of general relativity and electromagnetism. Chodos and Detweiler (1980) 
and Gross and Perry (1983) treated the U, case similarly. This work had its foundations 
in work by Bergmann (1942) who showed that the radius of the compact dimension 
was an invariant of the geometry. Weinberg (1983) extended these ideas to non-Abelian 
gauge groups and more generally to cases where the compact space is not a group 
space or a coset space. The gauge group is then the isometry group of the compact 
space. Weinberg (1983) related the gauge coupling constants to suitably averaged 
circumferences of the compact space. 

It is an exciting thought that one might be able to calculate values for gauge 
coupling constants using the above ideas. Unfortunately, an arbitrary scale factor for 
the compact space is always present so that ratios of coupling constants can be 
calculated but not their numerical values. This dilatation invariance was pointed out 
by Gross and Perry (1983) in the electromagnetic case. Appelquist and Chodos (1983) 
attempted to break the dilatation invariance using quantum corrections but were unable 
to get a finite result. The fifth dimension underwent collapse over the range of validity 
of their calculation. 

In the present paper we try a new approach to setting the scale of gauge groups. 
We use the idea of setting the spin connection in a manifold equal to a subgroup of 
the gauge group. Candelas et a1 (1985) did this in the context of finding a solution 
for the vacuum configurations of superstrings. Wilczek (1977) and Charap and Duff 
(1977) also set the vector potential equal to the spin connection as a way of finding 
solutions of the O(4) Yang-Mills gauge field equations by using known solutions in 
general relativity. 

For the present work, we start with a simple gauge group large enough to contain 
the usual gauge groups of interest as subgroups plus a subgroup which can be set 
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equal to the spin connection of the base manifold, here taken to be a general four- 
dimensional Riemannian space of general relativity. Since one subgroup is set equal 
to the spin connection, we use the known minimum non-zero value for the quantised 
spin of a particle, ih ,  to set the scale for this subgroup. This also sets the scale for all 
the other subgroups, since Weinberg’s approach, or simple group theory, fixes the 
ratios of the usual gauge coupling constants associated with the other subgroups to 
the ‘gauge coupling constant’ associated with the subgroup which was identified with 
the spin connection. We demonstrate this mechanism for the simple case where the 
spin connection is the usual SU, x SU, and the gauge group of interest is the U, of 
electromagnetism. The simple group is SU4, and we find aem - &. 

2. Spin connection 

Let us now turn to the details of the calculation. To carry out our program, we need 
the spin connection of our base space. The base space will be taken to be the 
four-dimensional Riemannian geometry of general relativity so that the spin connection 
refers to the spin of ordinary particles. Also we are primarily interested in local physics 
below. Thus we deal only with the infinitesimal holonomy group. The infinitesimal 
holonomy group (IHG) is the group generated by the linear connection in the tangent 
space (Loos 1967). It has been used to classify four-dimensional Riemannian spaces 
by Schell (1961) and Goldberg and Kerr (1961). This linear connection is the spin 
connection so that, on a manifold with a given IHG, the spin connection can be 
considered to be a gauge field of this same group. In particular, in four dimensions, 
the I H G  is the holonomy group associated with rotations in the four-dimensional tangent 
space. If the signature is (++++), the I H G  is a subgroup of O(4) (Candelas et a1 1985, 
Lichnerowicz 1976). If the signature is (+++-), the I H G  is a subgroup of O(3, 1). 
Using the usual unitary trick of f + if, the Lorentz group SO(3, 1) becomes SO(4, R ) .  
Now spinors involve a two-to-one covering of the tangent space. The I H G  is unaffected 
by this covering since a two-to-one pullback is involved. Then Spin(4) E SU, x SU2 is 
the simply connected covering group of SO(4, R ) .  (The representations of SO(4, R )  
correspond to non-unitary representations of the non-compact SO(3, l) ,  but unitarity 
is regained in the physical solutions of the Dirac equation.) We can also consider 
SO(4, c)  which has both SO(4, R )  and S O ( 3 , l )  as subgroups. The simply connected 
covering group of SO(4, c )  is Sl(2, c)  x Sl(2, c )  which has SU, x SU, as its maximal 
compact subgroup (Hermann 1975). Now, fibre bundles are the natural language to 
use in describing gauge theories. We note that a principal bundle with structure group 
Sl(2, c )  x Sl(2, c)  is equivalent to a principal bundle with structure group SU2 x SU, 
(Nash and Sen 1983). We will take the spin connection appropriate for the description 
of spinors in physics to be SU, x SU2 from the above considerations. This is, of course, 
a well known result. It agrees with the results of Schell (1961) who found that for 
four-dimensional spacetime a six-parameter I H G  is needed in general if all Petrov types 
are to be allowed. We note that having a spinor structure exist globally involves the 
Stiefel-Whitney classes (Milner 1963, Bichteler 1968, Geroch 1968, 1970). 

3. Sample calculation using the scale setting mechanism 

We now want to do a sample calculation to show how our mechanism for setting the 
scale of gauge coupling constants works. We consider a world in which the only usual 
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gauge interaction present is electromagnetism. We take the gauge group to be SU, 
and identify the SU2 x SU2 subgroup with the SU2 x SU2 spin connection discussed 
above. The U ,  subgroup refers to electromagnetism. This identification of the SU, x 
SU2 spin connection of the base space with an S U 2  x SU, subgroup of the gauge group 
is crucial and profound. I t  relates a spacetime symmetry to a gauge symmetry by 
treating spin in some sense as a gauge field like electromagnetism. This is reasonable 
since Weinberg (1983) has shown that gauge coupling constants are associated with 
compact gauge groups. In some sense spin, which comes in units of h / 2 ,  is a ‘charge’ 
associated with SU2 x SU2 just like electric charge is associated with U , .  

Before we find the relationship between the SU, x SU2 and the U, coupling con- 
stants, we need the diagonal generators of SU, in a representation which displays the 
SU, x SU, subgroup structure. The 15 traceless Hermitian generators can be taken to 
be 

where U, are the 2 x 2  Pauli spin matrices. 
If we define a matrix 

0 A B  [;: D* :* 0 P] 0 

then L’, L” correspond to A = -i, 1 with B = C = D = 0; L8, L” correspond to B = -i, 
1 with A = C = D = 0; Ly, L13 corresponds to C = -i, 1 with A = B = D = 0 and L’O, LI4 
correspond to D = -i, 1 with A = B = C = 0. These are analogous to the SU3 matrices 
of Gell-Mann (1962). To find the diagonal generator L” we use 

Tr( L’L’) = 26, (2) 

Tr Lk[  L’, L’] = 4iYJk ( 3 )  
are the structure constants and must be totally antisymmetric (Cell-Mann 

for normalisation and also the expression 

where 
1962). We find 

LIS=- 1 
J2 

1 
-1 

- 1 i (4) 

The other diagonal generators are 

from above. 
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Weinberg (1983) considers a compact space and an isometry group 9 of that space. 
tu are Hermitian generators of 9 and e m  a vector satisfying 

GapeneP = I. (6) 

He shows that, if for some en all eigenvalues of e m f ,  are integer multiples of the 
eigenvalue g, of lowest non-zero absolute value, then g, plays the role of the gauge 
coupling constant and is given by 

g, = ~ T K /  %Ne (7) 

where the representation used is N ,  valued for the subgroup generated by eat,, K = 
( 1 6 ~ G ) ' "  and %? is an appropriate root mean square circumference of the compact 
manifold. We will take the gauge space of SU, itself for the compact manifold. If we 
look at the subgroup generated by e,L" where L" are the Hermitian generators of SU, 
and let e3 = 1 and all other e, = 0, we find 

(8) 

where R is an arbitrary scale factor for the SU, group space and we are using units 
with h = c = 1. Letting e6 = 1 and all other e, = 0 gives the same result for the other 
SU, subgroup. The 1 in (8) arises from the form of the generators in ( 5 ) .  If we let 
eI5  = 1 and all other e, = 0, we get, using (4), that 

&U, = (1) x K I R  

1 K  
gu,  =- - 4 2  R (9) 

where the same scale factor appears in both (8) and (9), since we have a simple group. 
We now use the fact that we identify the SU,XSU, spin connection with the 

SU, x SU, subgroup of SU,. This means that gsu2 in (8) refers to the smallest unit of 
spin, namely h/2. In our above units with h = 1 we then have 

gsuz = f = K/R. (10) 

Equation (10) now sets the scale for R. We are using h and its relation to spin to get 
the gauge group scale. Once the scale of R is set, we can use it to calculate the 
remaining gauge coupling constants. In the present simple example, putting (10) into 
(9) gives 

g,, (4rrae,)1'2 = 11242 (11) 

aem = 1 1 3 2 ~  =A. (12) 

and the electromagnetic fine-structure constant becomes 

We note that the numerical constants in (8) and (9) arise from the structure of the 
simple gauge group, SU, in the present case. Equation (10) which sets the scale is a 
direct consequence of equating the SU2 x SU, spin connection with the SU, x SU, 
subgroup of the gauge group. 

To calculate aem in the real world, we need a much larger gauge group which 
includes the other interactions of nature. String theory (Schwarz 1982, Green 1983, 
Gross et a1 1985a, b)  may provide such a group. A group like SO,, is also a possibility. 
This group must have an SU, x SU2 subgroup which we can identify with the spin 
connection as above plus a subgroup large enough to contain all the 'internal' gauge 
symmetries. We also need to know the symmetry breaking pattern and need to include 
the effects of running coupling constants. The coupling constants we calculate will 
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apply at some high energy scale. In spite of these difficult problems, nonetheless, the 
above mechanism can be used to set the scale of the gauge group and should ultimately 
allow a realistic calculation of all the gauge coupling constants in the problem. 
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